Studies of Organotin(IV) Derivatives of DL-Methionine and L-Asparagine

Mala Nath* and Rakesh Yadav

Chemistry Department, University of Roorkee, Roorkee-247667, India

(Received November 16, 1997)

New organotin(IV) complexes of the general formula R_3SnL [where R=Me, Bu, and Ph], Ph_2SnL_2 and Bu_2SnL_2 [where L= monoanion of DL-methionine (HL-1) and L-asparagine (HL-2)] were synthesized and characterized by elemental analyses as well as molar conductance, electronic, infrared, far-infrared, 1H and ^{13}C NMR, and ^{119}Sn Mössbauer spectral studies. Probable structures are suggested for the complexes. Thermal studies of a few complexes have been carried out in the temperature range 25—1000 $^{\circ}C$ using the TG, DTG, and DTA techniques, indicating the formation of SnO as a residue. The complexes were tested in vitro against a wide spectrum of bacteria and fungi and found to be active. Only two complexes, Ph_3SnL-1 and Ph_3SnL-2 , have been found to be slightly active in vivo against a multiinfection fungal model in mice.

The chemistry of organotin(IV) compounds with a strongly ligating sulfur and possibly a ligating nitrogen is of interest in view of the biocidal activity of triorgano[R₃SnX] and diorgano[R₂SnX₂] tin compounds.^{1,2)} In particular, the effective R groups in [R₃SnX] are Me, Et, *n*-Pr, *n*-Bu, and Ph. Remarkably, each is effective against different living species, the toxicity decreasing along with an increase in the alkylchain length beyond C₄. Although detailed mechanisms are obscure, [R₃SnX] compounds (which inhibit mitochondrial oxidative phosphorylation) and [R₂SnX₂] compounds (which inhibit α -keto acid oxidation) are known to combine with the thiol and dithiol groups, respectively, in proteins and enzymes. There is also interest in organotin compounds with nitrogen ligands for cancer chemotherapy. 1,2) Some organotin(IV) complexes with sulfur-containing amino acid or other biological ligands have been studied.^{3—7)}

Trimethyltin glycinate has been shown by X-ray crystallography to be a linear polymer with amino bridged trigonal bipyramidal units having oxygen and nitrogen atoms in apical positions.8) Coordination occurs through a carboxylate oxygen and an amino nitrogen despite the generally believed greater affinity of tin for oxygen, which would lead to the well-established carboxylate bridged structure. 9,10) The observed stereochemistry presumably reflects the tendency of amino acids to utilize their functional groups as fully as possible in metal coordination.¹¹⁾ Methionine and asparagine are tridentate ligands, which contain a soft base, like thioether, and a hard base, like the amide group, respectively, in addition to the amino and carboxyl coordinating sites. The differences in the structures of these ligands might be reflected to the biological activities of their corresponding organotin compounds. In view of this, it was considered of interest to synthesize new organotin complexes of methionine and asparagine, and to study their structures and biological activity. The results of these investigations are reported in this paper.

Experimental

Materials: All of the reactions were carried out under an anhydrous and oxygen-free nitrogen atmosphere. The solvents were purified, dried and stored under nitrogen. The di- and triphenyltin(IV) chloride (E. Merck), tributyltin(IV) chloride (E. Merck), trimethyltin(IV) chloride (Aldrich Chemicals), dibutyltin(IV) oxide (Fluka), DL-methionine (Fluka) and L-asparagine (Fluka) were used as received.

Synthesis of Diphenyltin(IV) Complexes of Amino Acids: The amino acid (6.00 mmol) was dissolved in a minimum amount (25 ml) of absolute methanol. To this was added sodium methoxide, prepared by dissolving sodium (7.00 mmol) in absolute methanol (10 ml) under dry nitrogen; the resulting solution was refluxed for 2—3 h with constant stirring. A hot methanolic solution of diphenyltin(IV) chloride (3.00 mmol) in 1:2 (organotin: amino acid) molar ratio was added into the solution of the sodium salt of the amino acid. The mixture was again refluxed with constant stirring for 5—6 h. It was centrifuged and filtered in order to remove the sodium chloride, and any excess of solvent was removed under reduced pressure. The thus-obtained semisolid product was solidified by trituration with petroleum ether (bp 40—60 °C). The complexes were recrystallized from a methanol and petroleum ether (bp 40—60 °C) mixture.

Synthesis of Triorganotin(IV) Complexes of Amino Acids: The amino acid (4.00 mmol) was dissolved in a minimum amount (25 ml) of absolute methanol. To this was added sodium methoxide, prepared by dissolving sodium (4.00 mmol) in absolute methanol (10 ml) under dry nitrogen; the resulting solution was refluxed for 2—3 h with constant stirring. A hot methanolic solution of trimethyl-/, tributyl-/ or triphenyltin(IV) chloride (4.00 mmol) in ca. 1:1 molar ratio was added into the solution of the sodium salt of the amino acid. It was again refluxed with constant stirring for 5—6 h, and crystallization of the complex was carried out as described above.

Synthesis of Dibutyltin(IV) Complexes of Amino Acids: The complex was prepared under anhydrous conditions by the dropwise addition of a dry, hot benzene—methanol (3:1 v/v, 100 ml) solution of the dibutyltin(IV) oxide (4.00 mmol) in a 1:2 molar ratio to

the amino acid (8.00 mmol) in hot methanol (25 ml). The mixture was refluxed with constant stirring, giving a clear solution in 10—30 min. Refluxing was continued for 9—10 h with an azeotropic removal of water. Any excess of solvent was removed under reduced pressure. The thus-obtained oily product was solidified by trituration with petroleum ether (bp 40—60 °C), and recrystallized from a methanol and petroleum ether (bp 40—60 °C) mixture.

The melting points were determined on Measurements: a Toshniwal Capillary melting-point apparatus and were uncorrected. Tin and nitrogen in the complexes were determined by gravimetric and Kjeldahl's methods, respectively. 12,13) Infrared and far-infrared spectra were recorded on a FTIR spectrophotometer (model FTS 165), 4000—400 cm⁻¹ in KBr discs and 600—200 cm⁻¹ in CsI discs, respectively, at the Institute of Exploration and Petroleum, Dehradun, India. 1H and 13C NMR spectra were recorded on a Perkin-Elmer R-32 (90 MHz) and Bruker VM-400 MHz spectrophotometer at the Central Drug Research Institute (CDRI), Lucknow, India, using CDCl₃ or DMSO-d₆ as the solvent and tetramethylsilane as the internal standard. The details concerning the 119 Sn Mössbauer spectra, 12) thermal measurements and antimicrobial activity¹⁴⁾ of the complexes were similar to those reported previously. A multiinfection fungal (C. albicans-vaginal and systemic, C. neoformans-lungs and T. mentagrophytes-skin infection) model in Balb/c mouse has been developed for a rapid screening of the compounds. 15) The mice were pretreated with estradiol (500 µg/mouse) on day-4, and an evaluation of compound was performed after 5 d of inoculation. The evaluation was based upon a culture, cfu from tissue homogenates-kidney, lung, vagina, and skin.

The analytical data, molar conductance in CH₃OH (ohm⁻¹ cm² mol⁻¹), electronic spectral data in CH₃OH (nm), ¹H and ¹³C NMR chemical shift (δ /ppm) of the complexes in CDCl₃ or DMSO- d_6 are given below:

CH₃SCH₂CH₂CH(NH₂)COOSn(CH₃)₃ (Me₃SnL-1) (1): Dark brown; 80% yield; mp 172—175 °C. Found: Sn, 37.99; N, 4.45; S, 10.23%. Calcd for C₈H₁₉NO₂SSn: Sn, 38.04; N, 4.49; S, 10.28%. Molar conductance 31.5; UV-vis 213, n–π* (COO); ¹H NMR (90 MHz) δ = 2.82 (H-2, t (5.4, 6.3)), 1.40 (H-3, q), 2.12 (H-4, t (8, 10)), 1.65 (H-5, s), 1.12 (H-α, s), 1.20 (H-α, s); ¹³C NMR δ = 176.40 (C-1), 54.54 (C-2), 30.10 (C-3), 34.30 (C-4), 14.40 (C-5), 3.91 (C-α).

H₂NCOCH₂CH(NH₂)COOSn(CH₃)₃ (Me₃SnL-2) (2): Cream; 41% yield; mp 200—204 °C (decomp). Found: Sn, 40.25; N, 9.60%. Calcd for C₇H₁₆N₂O₃Sn: Sn, 40.25; N, 9.50%. Molar conductance 50.10; UV-vis 210, n– π *(COO); ¹H NMR (90 MHz): δ = 3.40 (H-2, t (5,7)), 2.50 (H-3), 2.59 (H-3, d (15)), 7.80 (H-5, d), 1.14 (H- α , s), 1.24 (H- α , s); ¹³C NMR δ = 172.42 (C-1), 51.55 (C-2), 52.64 (C-3), 175.67 (C-4), 3.95 (C- α).

CH₃SCH₂CH₂CH(NH₂)COOSn(C₄H₉)₃ (Bu₃SnL-1) (3): Light yellow; 50% yield; semisolid. Found: Sn, 26.97; N, 3.10; S, 7.30%. Calcd for C₁₇H₃₇NO₂SSn: Sn, 27.08; N, 3.20; S, 7.32%. Molar conductance 48.70; UV-vis 226, $n-\pi^*$ (COO).

H₂NCOCH₂CH(NH₂)COOSn(C₄H₉)₃ (Bu₃SnL-2) (4): Cream; 45% yield; semisolid. Found: Sn, 28.15; N, 6.65%. Calcd for $C_{16}H_{34}N_2O_3Sn$: Sn, 28.18; N, 6.65%. Molar conductance 70.52; UV-vis 220, $n-\pi^*(COO)$.

CH₃SCH₂CH₂CH(NH₂)COOSn(C₆H₅)₃ (Ph₃SnL- 1) (5): Cream; 45% yield; mp 115—118 °C. Found: Sn, 23.34; N, 2.78; S, 6.40%. Calcd for C₂₃H₂₅NO₂SSn: Sn, 23.82; N, 2.81; S, 6.44%. Molar conductance 39.5; UV-vis 197, 231, π - π * (E₂) benzenoid/n- π * (COO); 252, 258, 264, π - π * (B) benzenoid; ¹H NMR (400 MHz) δ = 3.40 (H-2, t (5.5,6.2)), 3.87 (H-3, q), 2.64 (H-4, t

(8,10)), 2.01 (H-5, s), 7.76 (H-6, d), 7.85 (H- β , d (8)), 7.37 (H- γ , dd (8,8)), 7.90 (H- δ , d (2)); ¹³C NMR δ = 177.26 (C-1), 54.45 (C-2), 30.10 (C-3), 34.88 (C-4), 14.44 (C-5), 136.13 (C- α), 135.93 (C- β), 127.85 (C- γ), 128.43 (C- δ).

H₂NCOCH₂CH(NH₂)COOSn(C₆H₅)₃ (Ph₃SnL-2) (6): Cream; 85% yield; mp 212—215 °C (decomp). Found: Sn, 23.98; N, 5.80%. Calcd for C₂₂H₂₂N₂O₃Sn: Sn, 24.67; N, 5.82%. Molar conductance 22.7; UV-vis 197, 224, π - π *(E₂) benzenoid/n- π *(COO); 251, 258, 264, π - π *(B) benzenoid; ¹H NMR (90 MHz) δ = 3.20 (H-2, t (5,7)), 2.62 (H-3), 2.81 (H-3, d (16)), 7.79 (H-5, d), 7.83 (H- β , d (8)), 7.34 (H- γ , dd (7,7)), 7.92 (H- δ , d (2)); ¹³C NMR δ = 172.20 (C-1), 51.65 (C-2), 52.44 (C-3), 175.54 (C-4), 138.85 (C- α), 135.90 (C- β), 127.40 (C- γ), 128.01 (C- δ).

[CH₃SCH₂CH₂CH(NH₂)COO]₂Sn(C₄H₉)₂ (Bu₂Sn(L- 1)₂) (7): Light yellow; 47% yield; mp 146—150 °C. Found: Sn, 22.10; N, 5.23; S, 12.08%. Calcd for $C_{18}H_{38}N_2O_4S_2Sn$: Sn, 22.42; N, 5.29, S, 12.12%. Molar conductance 54.1; UV-vis 211, $n-\pi^*(COO)$.

[H₂NCOCH₂CH(NH₂)COO]₂Sn(C₄H₉)₂ (Bu₂Sn(L-2)₂) (8): Light cream; 90% yield; mp 196—200 °C (decomp). Found: Sn, 23.54, N, 11.10%. Calcd for C₁₆H₃₂N₄O₆Sn: Sn, 23.97; N, 11.32%. Molar conductance 49.6; UV-vis 208, n–π*(COO); ¹H NMR (90 MHz) δ = 3.02 (H-2, t (5,7)), 2.51 (H-3), 2.61 (H-3, d (15)), 7.65 (H-5, d), 1.25—1.32 (H-α and H-β, m), 0.90 (H-γ, tq (7,7)), 0.65 (H-δ, t (7)); ¹³C NMR δ = 174.96 (C-1), 54.16 (C-2), 53.44 (C-3), 177.91 (C-4), 29.07 (C-α), 32.58 (C-β), 29.72 (C-γ), 14.22 (C-δ).

[CH₃SCH₂CH₂CH(NH₂)COO]₂Sn(C₆H₅)₂ (Ph₂Sn(L-1)₂) (9): Cream; 80% yield; mp 148—149 °C (decomp). Found: Sn, 20.52; N, 4.50; S, 11.02%. Calcd for C₂₂H₃₀N₂O₄S₂Sn: Sn, 20.85; N, 4.92; S, 11.26%. Molar conductance 57.0; UV-vis 197, 228, π -π*(E₂) benzenoid/n-π*(COO); 250, 256, 264, π -π*(B) benzenoid; ¹H NMR (400 MHz) δ = 3.26 (H-2, t (5,6)), 3.90 (H-3, q), 2.51 (H-4, t (8,10)), 1.97 (H-5, s), 7.79 (H-6, d), 7.87 (H- β , d (8)), 7.36 (H- γ , dd (8,8)), 7.92 (H- δ , d (2)); ¹³C NMR δ = 176.52 (C-1), 54.50 (C-2), 31.01 (C-3), 34.28 (C-4), 14.34 (C-5), 140.01 (C- α), 136.05 (C- β), 127.98 (C- γ), 128.01 (C- δ).

[H₂NCOCH₂CH(NH₂)COO]₂Sn(C₆H₅)₂ (Ph₂Sn(L-2)₂) (10): Cream; 78% yield; mp 118—120 °C. Found: Sn, 21.98; N, 10.42%. Calcd for $C_{20}H_{24}N_4O_6Sn$: Sn, 22.18; N, 10.47%. Molar conductance 54.1; UV-vis 197, 233, π - π *(E₂) benzenoid/n- π * (COO); 253, 258, 264, π - π *(B) benzenoid.

Results and Discussion

Reactions of R_3SnCl or Ph_2SnCl_2 with the sodium salt of the amino acids viz. DL-methionine (HL-1) and L-asparagine (HL-2) in 1:1 and 1:2 molar ratios, respectively, led to the formation of the complexes according to the Eqs. 2 and 3. The reactions of dibutyltin(IV) oxide with the amino acids in a benzene–methanol (3:1, v/v) mixture afforded the complexes in a 1:2 molar ratio with an azeotropical removal of water [Eq. 4].

$$HL-1/HL-2 + NaOMe \rightarrow Na(L-1/L-2) + MeOH$$
 (1)

$$R_3 SnCl + Na(L-1/L-2) \rightarrow R_3 Sn(L-1/L-2) + NaCl$$
 (2)

$$Ph_2SnCl_2 + 2Na(L-1/L-2) \rightarrow Ph_2Sn(L-1/L-2)_2 + 2NaCl$$
 (3)

$$Bu_2SnO + 2(HL-1/HL-2) \rightarrow Bu_2Sn(L-1/L-2)_2 + H_2O$$
 (4)

where,

$$\begin{split} HL-1 &= \stackrel{5}{\text{CH}_3}\text{SCH}_2\stackrel{3}{\text{CH}_2}\text{CH}_2\stackrel{2}{\text{CHCOOH}} \quad \text{and} \quad HL-2 = H_2 \stackrel{4}{\text{NCOCH}_2} \stackrel{2}{\text{CHCOOH}} \\ \stackrel{6}{\text{NH}_2} \qquad \qquad \stackrel{5}{\text{NNH}_2} \end{split}$$

$$R = - \stackrel{\alpha}{\text{CH}_3}, - \stackrel{\alpha}{\text{CH}_2} \stackrel{\beta}{\text{CH}_2} \stackrel{\gamma}{\text{CH}_2} \stackrel{\delta}{\text{CH}_2} \stackrel{3}{\text{CH}_3} \quad \text{and} \quad \stackrel{\alpha}{\xrightarrow{\beta}} \stackrel{\gamma}{\longrightarrow} \stackrel{\gamma}{\Rightarrow} \stackrel{\delta}{\Rightarrow} \end{split}$$

The above reactions were found to be quite facile and were completed within 9—10 h of refluxing. All of the newly synthesized complexes are colored, crystalline solids, except for 3 and 4, which are viscous semisolids. Although the complexes were stable towards air and soluble in methanol, some of them were sparingly soluble in chloroform, dimethyl sulfoxide, and dimethylformamide. The analytical data of the complexes given in experimental show that the metal-to-ligand ratio in triorgano- and diorganotin complexes is 1:1 and 1:2. The molar-conductance values of the complexes of 10^{-3} M ($1 M = 1 \text{ mol dm}^{-3}$) solutions were in the range 22.70— $70.52 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$, suggesting a non-electrolytic nature of the complexes.

The electronic spectra of DL-methionine and L-asparagine exhibit a very intense band at 204 and 201 nm, respectively, which may be due to the $n-\pi^*$ transition of the (COO) chromophore. The corresponding absorption band in the spectra of the organotin(IV) complexes has been observed at 220±12 nm. In the spectra of Ph₃SnL and Ph₂SnL₂ complexes, additional bands at 197 and 257±7 nm are observed which may be assigned to the $\pi-\pi^*$ (E₂) and $\pi-\pi^*$ (B) bands of phenyl groups attached to the tin.

The characteristic infrared frequencies of the complexes are listed in Table 1. The choices of the coordination number and geometry are known to be sensitive to the size of the substituent groups at tin9) and on the degree of branching in the ligand. 16) The infrared NH₂ stretching frequencies can help to distinguish coordinated groups from free amino groups. The amino acids, themselves, exist in a zwitterionic form in the solid state, RCH(NH₃⁺)COO⁻, in which there are NH₃⁺ groups. The free NH₂ groups are found in the amino acid salts. The v_{NH} of the amino group is observed at 2909 and 2877 cm⁻¹ in HL-1 and HL-2, respectively, whereas their sodium salts show the corresponding absorption at 3000 and 3053 cm⁻¹, respectively. There is thus a substantial lowering on protonation. Coordination to metal centres also gives rise to a substantial shift. In the IR spectra of organotin(IV) complexes this band has undergone a substantial lowering $(2736-3065 \text{ cm}^{-1})$ from the values for the sodium salts of HL-1 and HL-2, indicating the coordination of the amino acids through the amino group to tin. Similar results have also been reported for R_3SnAA (R = Me or cyclohexyl, AA = anion of amino acid). A band at $3418\pm18 \text{ cm}^{-1}$ in the IR spectra of HL-2 and its sodium salts has been assigned to the stretching mode of the amido (-CONH₂) group which remains unaltered in the organotin(IV) complexes, indicating its non-involvement in coordination. Therefore, we interpret the observed shifts to lower energy and accompanying intensity enhancement as arising from amino-group coordination to tin, because coordination increases the electron demand at nitrogen and the polarity of the N-H bond. Apparently the change in this dipole during a stretching vibration is also

increased, since an increase in the total absorption intensity generally accompanies coordination of the amino group.¹⁷⁾ As previously reported¹⁷⁾ the intense NH₂ absorption observed here is relatively narrow, suggesting that hydrogen bonding, usually prominent in amino acids and their derivatives, is not pronounced in tin compounds. The zwitterionic forms of the amino acids in the solid state have symmetric anionic carboxylate groups, as do their salts. The sodium salts of HL-1 and HL-2, and the zwitterionic solids, HL-1 and HL-2, have v_{as} carboxyl absorptions at 1630 and 1595, and 1623 and 1594 $cm^{-1},$ respectively. The $\nu_{as}(COO)$ and $v_s(COO)$ in the organotin derivatives of HL-1 and HL-2 are observed at 1651 ± 21 and 1428 ± 23 cm⁻¹, respectively, indicating that the $v_{as}(COO)$ moves to higher frequencies than in the amino acids, themselves. The band positions as well as $\Delta v (v_{as}(COO) - v_{s}(COO) = 235 \pm 33 \text{ cm}^{-1})$ are comparable to those reported for R₃SnAA¹⁷ and R₃Sn(AcglyO) as well as R₃Sn(AcAlaO) and R₃Sn(AcMetO). 18) Ionic bonding as well as bridging or chelation can therefore be excluded, and carboxylic groups bonding tin unidentately must be assumed. 17,18) It has further been confirmed based on the appearance of a sharp band at 563±33 cm⁻¹, assignable to the Sn-O stretching vibration. 12,14) The conclusions drawn above are further supported by the presence of a new band in the far-IR spectra of all complexes, at ca. 432 ± 25 cm⁻¹, which may be assigned to the $\nu(Sn \leftarrow N)$. The $\nu_{as}(Sn - C)$ and $v_s(Sn-C)$ in the tri- and diphenyltin derivatives are observed at 275 ± 5 and 240 ± 5 cm⁻¹, respectively, whereas, the corresponding vibrations in tri- and dialkyltin compounds are observed at 627 ± 59 and 549 ± 84 cm⁻¹, respectively. This clearly indicates the existence of cis-organic groups in all of the organotin complexes. 12,14)

¹H NMR data of the complexes, except for complexes of Sl. Nos. 3, 4, 7 and 10, because of their insufficient solubility in CDCl₃ and DMSO-d₆, have been recorded and are given in Experimental. The absence of a signal due to the –OH proton at $\delta = 12.00 - 13.00$ suggests deprotonation of the carboxylic oxygen atom of the amino acids upon complexation.¹⁹⁾ The NH signal of the amino group is shifted to lower δ values, $\delta = 7.73 \pm 0.08$, (if not obscured by superposition by phenyl protons in DMSO-d₆ solutions of SnPh₃ and SnPh₂ compounds), indicating the coordination of the NH2 group to tin. Similarly, -NCH signal is shifted to lower δ (δ = 3.11 ± 0.29 for compounds **1**, **5**, and **9** and $\delta = 3.21\pm0.19$ for compounds 2, 6, and 8) upon complexation, compared to the free zwitterionic form (-NCH' at $\delta = 3.80$ for HL-1 and $\delta = 4.00$ for HL-2 in D₂O).²⁰⁾ The butyl protons attached to the tin in compound 8 appear at appropriate positions in accordance to the previously reported values.²¹⁾ The signals for the phenyl groups attached to tin are observed in the range $\delta = 7.92 - 7.34$ in compounds 5, 6, and 9. Two singlets due to SnMe₃ protons of compounds 1 and 2 have been assigned at $\delta = 1.13 \pm 0.01$ and 1.22 ± 0.02 , respectively, indicating the presence of methyl groups in two different environments. The number of protons of the various groups, calculated from the integration curves, and those calculated for the expected molecular formula agree with each other.

Table 1. Infrared Frequencies (in cm⁻¹) of the Amino Acids and their Complexes

HL/NaL/	vCH/vNH	$\nu_{\rm as}({ m COO})$	$\nu_{\rm s}({ m COO})$	Δν	vas(Sn-C)	v _s (Sn-C)	v(Sn-O)	ν(Sn←N)
Complexes			. <u> </u>			<u> 1900 - </u>	<u> </u>	
HL-1	3075w	1623s	1410s				 ,	· <u> </u>
	3036w							
	2940m							
	2909m							
HL-2	3436m (amide)	1594s	1439s					_
	3099m							
	2923m							
	2877m				•			
NaL-1	3086m	1630s	1414s	_				
	3000m							
	2970m							
	2949m							
NaL-2	3400m (amide)	1595s	1432s	_				·
	3053m							
	2968m							
	2840m		•					
Me ₃ SnL-1	2964m	1660m	1415s	245	685m	595m	554m	440s
	2920m							
Me ₃ SnL-2	3405w (amide)	1672s	1405s	267	681m	633s	543s	456s
	3364w				•			
	3067w							
Bu ₃ SnL-1	2955s	1670m	1405m	265	570m	465s	530w	407m
	2905s	•						
Bu ₃ SnL-2	3402m (amide)	1660m	1450w	210.	568m	464m	535s	410s
	2934w							
Ph ₃ SnL-1	3100brw	1630w	1428s	202	270s	240s	554w	446s
	3000w							
Ph ₃ SnL-2	3405brs (amide)	1671s	1413m	258	272m	245s	540s	448s
	3065m			· - · · · · ·				
$Bu_2Sn(L-1)_2$	3000m	1652m	1415s	237	685s	554vs	596s	440s
	2920m				•			
$Bu_2Sn(L-2)_2$	3405m (amide)	1660s	1436s	224	658m	488m	536s	428m
	2736m							
$Ph_2Sn(L-1)_2$	3005w	1670m	1416s	254	280m	236s	565m	434s
	2900w							
$Ph_2Sn(L-2)_2$	3403w (amide)	1653s	1430s	223	276w	244m	545m	428s
	2976m							

m, medium; s, strong; w, weak; brs, broad strong; brw, broad weak.

The 13 C chemical shifts of various carbon atoms in compounds 1, 2, 5, 6, 8, and 9 in DMSO- d_6 are given in Experimental. The signals of the carboxyl carbon of the amino acids are observed at lower δ upon complexation, compared to those of free amino acids; HL-1 shows a carboxyl carbon at δ =182.7 and HL-2 shows a carboxyl carbon at δ =174.1. 20 The shifting observed in the C-2 and C-3 resonances of the amino acids in the organotin derivatives is due to coordination of the amino acids through the -NH₂ and -COO groups to tin. The 13 C chemical shifts of methyl, butyl and phenyl groups attached to tin are observed at positions comparable with other, similar compounds. $^{22-24}$ Due to an insufficient solubility of the organotin complexes in CDCl₃, their 119 Sn NMR spectra could not be recorded.

Tin-119 Mössbauer spectroscopy has been employed to obtain additional structural information; also, the results obtained for organotin(IV) complexes of amino acids are reported in Table 2. The C.S. values indicate the presence

Table 2. 119 Sn Mössbauer Spectroscopic Data of the Complexes

Complexes	Q. S. $(mm s^{-1})$	C. S. $(mm s^{-1})$	ho
Me ₃ SnL-1	3.06 ± 0.02	1.27 ± 0.01	2.41
Me ₃ SnL-2	3.05 ± 0.01	1.26 ± 0.01	2.42
Ph ₃ SnL-1	2.40 ± 0.02	1.13 ± 0.01	2.12
Ph ₃ SnL-2	2.45 ± 0.03	1.09 ± 0.00	2.25
$Bu_2Sn(L-1)_2$	2.49 ± 0.02	1.14 ± 0.01	2.18
$Bu_2Sn(L-2)_2$	2.35 ± 0.03	1.06 ± 0.01	2.22
$Ph_2Sn(L-1)_2$	2.42 ± 0.03	1.03 ± 0.01	2.35
$Ph_2Sn(L-2)_2$	2.40 ± 0.02	1.08 ± 0.01	2.22

of tin in the +IV oxidation state, and the quadrupole splitting shows that the electric field gradient around the tin nucleus is produced due to inequalities in the tin-amino acids σ bonds. The ρ (Q.S./C.S.) values of >2.1 in these complexes indicate a coordination number greater than four. The monomeric six-coordinate structures seem to be the most

Fig. 1. Structures of diphenyl- or dibutyltin complexes of (a) DL-methionine and (b) L-asparagine.

probable for dibutyl- and diphenyltin complexes of HL-1 and HL-2, as the C.S. and Q.S. values are well within the range $(1.14\pm0.01-1.03\pm0.01 \text{ and } 2.49\pm0.02-2.35\pm0.03)$ mm s⁻¹, respectively) presented for the octahedral geometries with cis-R groups [Fig. 1. (a) and (b)]. The pointcharge calculations predict that octahedral organotin(IV) compounds with two organic groups have a O.S. value of 2.00 mm s^{-1} for the *cis* isomer and 4.00 mm s^{-1} for the trans isomer. 25-27) The cis configuration is also consistent with the observed multiple Sn-C vibrational modes in the infrared spectra. The possible geometry around the tin in R_3SnL (where R = Me, Bu, Ph, and L = anion of HL-1 and HL-2) is distorted trigonal bipyramidal, in which the amino acid anion is monofunctional bidentate coordinating through an ON donor set derived from the carboxylic oxygen and the amino nitrogen atoms. Each of the three isomers (Fig. 2) of R_3SnL (L = bidentate ligand) has been reported²¹⁾ to have a different Q.S. value, viz. Q.S. for an isomer (c) 1.7-2.3 $mm s^{-1}$; for (d) 3.0—3.9 $mm s^{-1}$; and for (e) 3.5—4.1 mm s⁻¹. The observed Q.S. values of Me₃SnL-1, Ph₃SnL-2 $(3.06-2.40 \text{ mm s}^{-1})$ support structure (c), which is in agreement with the observed multiple Sn-C vibration in the IR spectra. The structures of R₃SnL are shown in Fig. 3 (a) and (b), which are further supported by the occurrence of two methyl signals in the ¹H NMR spectra of Me₃SnL-1

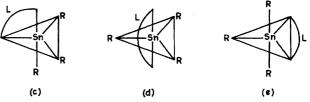


Fig. 2. The possible isomers of R₃SnL.

and Me₃SnL-2. All of the organotin(IV) complexes of the amino acids have a monomeric structure with chelated amino acids. It was previously reported¹⁷⁾ that substituents on the carbon next to the amino group (the α carbon) will not hinder any intramolecular association (chelation), since they can be directed away from the organic groups attached to tin, whereas in intermolecular association (polymerization) the substituents on the adjacent carbon are brought into close contact with the organic groups. Thus, bulky substituents on the α carbon would be expected to disrupt polymerization, but not chelation, and only pointed ligand groups, such as CH2NH2, can achieve intermolecular coordination with the organic groups.^{8,17)} Therefore, the bulky groups, such as (-CH₂CH₂SCH₃) in methionine and (-CH₂CONH₂) in asparagine, can disrupt polymerization, but not chelation. Hence, monomeric six-coordinate and five-coordinate structures with chelated amino acid anion for R₂SnL and R₃SnL,

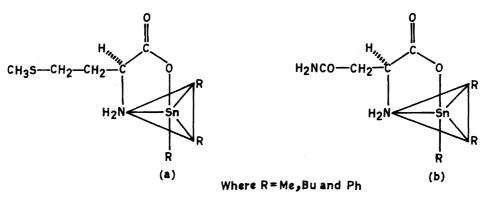


Fig. 3. Structures of triorganotin complexes of (a) DL-methionine and (b) L-asparagine.

Complexes			Minimu	m inhibitor	y concen	tration (MI	C) ^{a)} in µg ı	nl^{-1} again	st	-
			Bacteria					Fungi		
	1	2	3	4	5	6	7	8	9	10
Me ₃ SnL-1	I	I	I	I	50	50	50	I	50	I
Me ₃ SnL-2	I	I	I	I	I	50	I	50	50	50
Ph ₃ SnL-1	25	<12.5	50	<12.5	50	<12.5	<12.5	I	<12.5	<12.5
Ph ₃ SnL-2	25	50	<12.5	I	50	<12.5	I	<12.5	<12.5	<12.5
$Bu_2Sn(L-2)_2$	50	I	I	I	I	50	I	50	50	I
$Ph_2Sn(L-1)_2$	25	50	I	25	50	25	12.5	I	25	<12.5
Ph ₃ SnCl	I	I	12.5	I	6.25	12.5	1.56	6.25	3.925	3.125
Ph_2SnCl_2	25	I	25	I	12.5	I	25	I	25	I
Bu_2SnO	50	I	I	I	I	I	50	50	I	50
Amphotericin-B ^{b)}						0.20	0.39	1.00	0.42	0.76
5,Flucytosine ^{c)}		**********				1.20	0.59		0.39	
Norflox ^{d)}		12.5	6.2	12.5	3.0					-
Cap. flox ^{e)}	1.5	3.1	1.5	0.78	0.78		-			

Table 3. Results of Antimicrobial Activity of Organotin(IV) Complexes of Amino Acids

a) The samples were not screened below 12.5 μg ml⁻¹; I, Inactive; solvent used, DMSO. 1. *Streptococcus faecalis*, 2. *Klebsiella pneumoniae*, 3. *Escherichia coli*, 4. *Pseudomonas aeruginosa*, 5. *Staphylococcus aureus* [Penicillin resistance (2500 unit)], 6. *Candida albicans*, 7. *Cryptococcus neoformans*, 8. *Sporotrichum schenckii*, 9. *Trichophyton mentagrophytes*, 10. *Aspergillus fumigatus*:

Table 4. In Vivo Evaluation of the Selected Organotin(IV) Complexes of Amino Acids Against Multiinfection Fungal Model

Complexes	No. of animal	Dose	A.V. cfu/gram tissue		Vaginal	Skin culture	
	used/survival	(mg kg^{-1})	Kidney	Lungs	culture cfu	positive/ Total No. animals	
Ph ₃ SnL-1	5/0	100				_	
	5/2	50	0.1	0.0	2.4×10^{4}	1/1	
Ph ₃ SnL-2	5/0	100			_		
	5/1	50	0.0	0.0	2.0×10^{4}	1/1	
Control	5/5	(PEG)	6×10^4	2×10^7	3.5×10^4	3/5	

respectively, have been proposed.

In vitro antimicrobial results (MIC in $\mu g \, ml^{-1}$) against a wide spectrum of bacteria and fungi of complexes Me₃SnL-1, Me₃SnL-2, Ph₃SnL-1, Ph₃SnL-2, Bu₂Sn(L-2)₂, and Ph₂Sn(L-1)₂, which are soluble in DMSO, as well as the MIC values of Ph₃SnCl, Ph₂SnCl₂, Bu₂SnO, and of some reference compounds are presented in Table 3. Due to insufficient solubility of compounds **3**, **4**, **7**, and **10** in DMSO, they could not be screened. In comparison to the parent tin compounds,

viz. Ph₃SnCl, Ph₂SnCl₂, and Bu₂SnO, all six organotin(IV) derivatives of the amino acids exhibit considerable activity. Further, as is evident from the data collected in Table 3, the fungicidal and bactericidal activities of the organotin compounds under the experimental conditions decreased in the following order: triphenyl- > diphenyl- > dibutyl- > trimethyltin complex. Because of the high antifungal activities of Ph₃SnL-1 and Ph₃SnL-2, they have been screened in vivo against a multiinfection fungal model in mice. The

Complexes	Temp range Peak temp (°C) from TG in DTG (°C)		Peak temp in DTA (°C) [Nature of peak]	Loss of weight % from TG obsd (calcd)	Total %wt loss obsd (calcd)	
Ph ₃ SnL-1	80-512	310	120 (endothermic) ^{a)}		73.91 (72.96)	
	with inflection		followed by broad			
	at 310		exotherm in the	•		
			range 170—510			
Ph ₃ SnL-2	80—310	305	123 (exothermic)	47.91 (48.08)	72.91 (72.00)	
	310503	350	279 (broad exotherm)	25.00 (23.92)		
Me ₃ SnL-1	80—160	94	107 (exothermic)	14.72 (14.46)	56.35 (56.83)	
	160-424	192	198 (exothermic)	41.63 (42.36)		
$Bu_2Sn(L-2)_2$	85—210	181	181 (endothermic)	23.00 (23.07)	72.92 (72.80)	
	210500	284	280 (broad exotherm)	49.92 (49.73)		

Table 5. Thermal Analysis Data of the Complexes

compounds were tested at 100 and 50 mg kg⁻¹, P.O., for 4 d concerning antifungal efficacy. The results (Table 4) indicate that the compounds at 100 mg kg⁻¹ were toxic, since most of the animals died during the experimental period, and did not show promising activity. Both compounds were found to be active at a dose of 50 mg kg⁻¹, but were not found to be active as compared (cfu) to the controls. Although the ligands, methionine and asparagine have different structures containing a soft-base thioether and a hard-base amide group, respectively, the observed antimicrobial activities of their organotin(IV) compounds are more or less the same. It seems that the activities of the organotin(IV) compounds are apparently due to the organic groups attached to tin, and the amino acid anion has little influence on their biological behavior.

Thermal Studies: The thermal decomposition of some complexes, viz. Me₃SnL-1, Ph₃SnL-1, Ph₃SnL-2, and Bu₂Sn(L-2)₂, has been studied using TG, DTG, and DTA techniques. All of the complexes gradually decomposed along with the formation of SnO under a dry nitrogen atmosphere above 424 °C. As is evident from the data compiled in Table 5, all of the complexes, except for Ph₃SnL-1, decomposed in two steps, corresponding to the loss of organic groups attached to tin in the first step, followed by the loss of an amino acid anion, giving SnO as a residue. The observed percent weight loss in each step is in close agreement with the calculated value for all complexes. The corresponding DTG and DTA peak temperatures are also given in Table 5. The Ph₃SnL-1 complex decomposes in a single step in the range 80-512 °C, giving SnO as a residue. The residues in all cases have been characterized by X-ray analyses and tin determinations. All of the 'd' values observed in the residues were in good agreement with the reported 'd' values for SnO.28)

This work was a part of a research project sponsored by UGC, New Delhi, India. The authors thank to the UGC for financial support. They also thank to Dr. A. K. Goel and Dr. Z. K. Khan of CDRI, Lucknow, India for providing antimicrobial results and Prof. G. Eng, University of District of Columbia, Washington, for providing the ¹¹⁹Sn Mössbauer spectral data of two compounds. One of the authors (R. Y.)

is thankful to CSIR, New Delhi for the award of Senior Research Fellowship.

References

- 1) J. J. Zuckerman, "Organotin Compounds: New Chemistry and Applications," Adv. Chem. Ser., Vol. 157, p. 227 (1976).
- 2) A. G. Davies and P. J. Smith, in "Comprehensive Organometallic Chemistry," ed by G. Wilkinson, Pergamon Press, Oxford (1982), Vol. 11, p. 608.
- 3) G. Domazetis, M. F. Mackay, R. J. Magee, and B. D. James, *Inorg. Chim. Acta*, **34**, L247 (1979); G. Domazetis and M. F. Mackay, *J. Cryst. Mol. Struct.*, **9**, 57 (1979).
- 4) G. Domazetis, R. J. Magee, and B. D. James, *J. Organomet. Chem.*, **162**, 239 (1978).
- 5) G. Domazetis, R. J. Magee, B. D. James, and J. D. Cashion, J. Inorg. Nucl. Chem., 43, 1351 (1981); J. D. Cashion, G. Domazetis, and B. D. James, J. Organomet. Chem., 185, 433 (1980).
- 6) G. Domazetis, R. J. Magee, and B. D. James, *J. Organomet. Chem.*, **148**, 339 (1978).
- 7) G. Domazetis, R. J. Magee, and B. D. James, *J. Organomet. Chem.*, **173**, 357 (1979).
- 8) B. Y. K. Ho, J. A. Zubieta, and J. J. Zuckerman, *J. Chem. Soc.*, *Chem. Commun.*, **1975**, 88.
- 9) B. Y. K. Ho and J. J. Zuckerman, J. Organomet. Chem., 49, 1 (1973).
- 10) N. W. Alcock and R. E. Timms, *J. Chem. Soc. A*, **1968**, 1873; H. Chih and B. R. Penfold, *J. Cryst. Mol. Struct.*, **3**, 285 (1973).
- 11) H. C. Freeman, Adv. Protein Chem., 22, 257 (1967).
- 12) M. Nath and S. Goyal, *Main Group Met. Chem.*, **16**, 167 (1993).
- 13) T. N. Srivastava and P. C. Kamboj, "Systematic Analytical Chemistry," Vishal Publication, Delhi (1985), p. 361.
- 14) M. Nath, S. Goyal, G. Eng, and D. Whalen, *Bull. Chem. Soc. Jpn.*, **69**, 605 (1996).
- 15) R. K. Maheswhari, R. N. Tandon, A. Feuillette, G. Mahouy, G. Badiallet, and R. M. Friedman, *J. Interferon Res.*, **8**, 35 (1988).
- 16) B. F. E. Ford, B. V. Liengme, and J. R. Sams, *J. Organomet. Chem.*, **19**, 53 (1969).
- 17) B. Y. K. Ho and J. J. Zuckerman, *Inorg. Chem.*, **12**, 1552 (1973).
- 18) G. Rose, F. Huber, H. Preut, A. Silvestri, and R. Barbieri, *J. Chem. Soc.*, *Dalton Trans.*, **1983**, 595.
- 19) M. Nath, C. L. Sharma, and N. Sharma, *Synth. React. Inorg. Met.-Org. Chem.*, **21**, 807 (1992).

a) mp of the complex.

- 20) G. C. Barrett, "Chemistry and Biochemistry of the Amino Acids," Chapman and Hall, New York (1985), p. 525.
- 21) M. Nath, R. Yadav, M. Gielen, H. Dalil, D. de. Vos, and G. Eng, Appl. Organomet. Chem., 11, 727 (1997).
- 22) R. Tiwari, G. Srivastava, R. C. Mehrotra, and A. J. Crowe, *Inorg. Chim. Acta*, **111**, 167 (1986).
- 23) A. Saxena and J. P. Tandon, *Polyhedron*, 3, 681 (1984).
- 24) B. S. Saraswat and J. Mason, Polyhedron, 5, 1449 (1986).
- 25) R. R. Berrett and B. W. Fitzsimmons, *J. Chem. Soc. A*, **1967**, 525.
- 26) B. W. Fitzsimmons, N. J. Seeley, and A. W. Smith, *J. Chem. Soc. A*, **1969**, 143.
- 27) R. V. Parish and R. H. Platt, *Inorg. Chim. Acta*, 4, 65 (1970).
- 28) "Powder Diffraction File Sets 6-10 (7-195)," Joint Committe on Powder Diffraction Standards, Philadelphia, PA (1967), p. 213.